Combinatorial Lie bialgebras of curves on surfaces
نویسنده
چکیده
Goldman [Gol] and Turaev [Tur] found a Lie bialgebra structure on the vector space generated by non-trivial free homotopy classes of curves on a surface. When the surface has non-empty boundary, this vector space has a basis of cyclic reduced words in the generators of the fundamental group and their inverses. We give a combinatorial algorithm to compute this Lie bialgebra on this vector space of cyclic words. Using this presentation, we prove a generalization of Goldman’s result relating the bracket to disjointness of curve representatives when one of the classes is simple. We exhibit some examples we found by programming the algorithm which answer negatively Turaev’s question about the characterization of simple curves in terms of the cobracket. Further computations suggest an alternative characterization of simple curves in terms of the bracket of a curve and its inverse. Turaev’s question is still open in genus zero.
منابع مشابه
Braided Lie Bialgebras
We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of ...
متن کاملDouble Bicrossproduct Lie Bialgebras
We construct double biproduct, bicrossproduct, double crossproduct, double bicrossproduct Lie bialgebras from braided Lie bialgebras. The relations between them are found. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double of Lie bialgebras, and Masuoka’s cross product Lie bialgebras. Some properties of double biproduct Lie bialgebras are given. In the a...
متن کاملGeneralized Lie Bialgebras and Jacobi Structures on Lie Groups
We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras. Lie bialgebras are examples of generalized Lie bialgebras. Moreover, we prove that the last ones can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structures. We also propose a method to obtain generalized Lie bialgebras. It is a generalization of t...
متن کاملDouble Cross Biproduct and Bicycle Bicrossproduct Lie Bialgebras
We construct double cross biproduct and bicycle bicrossproduct Lie bialgebras from braided Lie bialgebras. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double, and Masuoka’s cross product Lie bialgebras. 2000 Mathematics Subject Classification: 17B62, 18D35
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006